Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 478, Pages 100–107 (Mi znsl6747)  

On Thompson's conjecture for finite simple exceptional groups of Lie type

I. B. Gorshkova, I. B. Kaygorodovb, A. V. Kukharevc, A. A. Shlepkind

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Universidade Federal do ABC, Santo Andre, Brazil
c Vitebsk State University, Vitebsk, Belarus
d Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: Let $G$ be a finite group and $N(G)$ be its set of conjugacy class sizes. In the present paper it is proved $G\simeq L$ if $N(G)=N(L)$, where $G$ is a finite group with trivial center and $L$ is a finite simple group of exceptional Lie type.
Key words and phrases: finite group, simple group, exceptional group of Lie type, conjugacy classes, Thompson conjecture.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research F17RM-063
Russian Foundation for Basic Research 17-51-04004
The work was supported by RFBR 17-51-04004, BRFFR F17RM-063.
Received: 05.02.2019
Document Type: Article
UDC: 512.542.6
Language: English
Citation: I. B. Gorshkov, I. B. Kaygorodov, A. V. Kukharev, A. A. Shlepkin, “On Thompson's conjecture for finite simple exceptional groups of Lie type”, Problems in the theory of representations of algebras and groups. Part 34, Zap. Nauchn. Sem. POMI, 478, POMI, St. Petersburg, 2019, 100–107
Citation in format AMSBIB
\Bibitem{GorKayKuk19}
\by I.~B.~Gorshkov, I.~B.~Kaygorodov, A.~V.~Kukharev, A.~A.~Shlepkin
\paper On Thompson's conjecture for finite simple exceptional groups of Lie type
\inbook Problems in the theory of representations of algebras and groups. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 478
\pages 100--107
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6747}
Linking options:
  • https://www.mathnet.ru/eng/znsl6747
  • https://www.mathnet.ru/eng/znsl/v478/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :29
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024