|
Zapiski Nauchnykh Seminarov POMI, 2019, Volume 478, Pages 100–107
(Mi znsl6747)
|
|
|
|
On Thompson's conjecture for finite simple exceptional groups of Lie type
I. B. Gorshkova, I. B. Kaygorodovb, A. V. Kukharevc, A. A. Shlepkind a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Universidade Federal do ABC, Santo Andre, Brazil
c Vitebsk State University,
Vitebsk, Belarus
d Siberian Federal University,
Krasnoyarsk, Russia
Abstract:
Let $G$ be a finite group and $N(G)$ be its set of conjugacy class sizes. In the present paper it is proved $G\simeq L$ if $N(G)=N(L)$, where $G$ is a finite group with trivial center and $L$ is a finite simple group of exceptional Lie type.
Key words and phrases:
finite group, simple group, exceptional group of Lie type, conjugacy classes, Thompson conjecture.
Received: 05.02.2019
Citation:
I. B. Gorshkov, I. B. Kaygorodov, A. V. Kukharev, A. A. Shlepkin, “On Thompson's conjecture for finite simple exceptional groups of Lie type”, Problems in the theory of representations of algebras and groups. Part 34, Zap. Nauchn. Sem. POMI, 478, POMI, St. Petersburg, 2019, 100–107
Linking options:
https://www.mathnet.ru/eng/znsl6747 https://www.mathnet.ru/eng/znsl/v478/p100
|
|