Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 477, Pages 12–34 (Mi znsl6735)  

This article is cited in 2 scientific papers (total in 2 papers)

Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder

Yu. O. Belyaeva, A. L. Skubachevskii

Peoples' Friendship University of Russia, Moscow, Russia
Full-text PDF (297 kB) Citations (2)
References:
Abstract: We consider the first mixed problem for the Vlasov–Poisson system in an infinite cylinder. This problem describes the kinetics of charged particles of high-temperature plasma. We show that the characteristics of the Vlasov equations do not reach the boundary of the cylinder if the external magnetic field is sufficiently large. Sufficient conditions are obtained for existence and uniqueness of the classical solution of the Vlasov–Poisson system with ions and electrons density distribution functions supported at some distance from the boundary of the cylinder.
Key words and phrases: Vlasov–Poisson equations, mixed problem, classical solutions, external magnetic field.
Received: 03.12.2018
Document Type: Article
Language: Russian
Citation: Yu. O. Belyaeva, A. L. Skubachevskii, “Unique solvability of the first mixed problem for the Vlasov–Poisson system in an infinite cylinder”, Boundary-value problems of mathematical physics and related problems of function theory. Part 47, Zap. Nauchn. Sem. POMI, 477, POMI, St. Petersburg, 2018, 12–34
Citation in format AMSBIB
\Bibitem{BelSku18}
\by Yu.~O.~Belyaeva, A.~L.~Skubachevskii
\paper Unique solvability of the first mixed problem for the Vlasov--Poisson system in an infinite cylinder
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 477
\pages 12--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6735}
Linking options:
  • https://www.mathnet.ru/eng/znsl6735
  • https://www.mathnet.ru/eng/znsl/v477/p12
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :118
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024