|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 476, Pages 79–91
(Mi znsl6725)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Angles of the Gaussian simplex
Z. Kabluchkoa, D. Zaporozhetsb a Institut für Mathematische Stochastik,
Westfälische Wilhelms-Universität Münster,
Orléans–Ring 10, 48149 Münster, Germany
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Consider a $d$-dimensional simplex whose vertices are random points chosen independently according to the standard Gaussian distribution on $\mathbb R^d$. We prove that the expected angle sum of this random simplex equals the angle sum of the regular simplex of the same dimension $d$.
Key words and phrases:
convex hull, Gaussian simplex, regular simplex, solid angle, random polytope, convex cone.
Received: 28.11.2018
Citation:
Z. Kabluchko, D. Zaporozhets, “Angles of the Gaussian simplex”, Geometry and topology. Part 13, Zap. Nauchn. Sem. POMI, 476, POMI, St. Petersburg, 2018, 79–91
Linking options:
https://www.mathnet.ru/eng/znsl6725 https://www.mathnet.ru/eng/znsl/v476/p79
|
Statistics & downloads: |
Abstract page: | 111 | Full-text PDF : | 35 | References: | 25 |
|