|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 476, Pages 5–19
(Mi znsl6721)
|
|
|
|
On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$
A. A. Akopyana, A. V. Levichevb a Boston University, 985 Commonwealth Ave., Boston, MA 02215, USA
b Sobolev Institute of Mathematics, Siberian Division of the Russian Academy of Sciences, 4 Koptiug pr., Novosibirsk, 630090, Russia
Abstract:
The fractional linear action of $\mathrm{SO}(3,3)$ on the projective space $\mathrm{SO}(3)$ is proven to be a (globally defined) projective action.
Key words and phrases:
$2$-cover of $\mathrm{SO}(3,3)$ by $\mathrm{SL}(4)$, fractional linear action of $\mathrm{SO}(3,3)$ on $\mathrm{SO}(3)$, bi-invariant metrics, geodesics, $2$-cover of $S^1\times \mathrm{SO}(3)$ by Segal's compact cosmos $\mathrm{UU}(2)$.
Received: 03.11.2018
Citation:
A. A. Akopyan, A. V. Levichev, “On $\mathrm{SO}(3,3)$ as the projective group of the space $\mathrm{SO}(3)$”, Geometry and topology. Part 13, Zap. Nauchn. Sem. POMI, 476, POMI, St. Petersburg, 2018, 5–19
Linking options:
https://www.mathnet.ru/eng/znsl6721 https://www.mathnet.ru/eng/znsl/v476/p5
|
|