|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 475, Pages 174–189
(Mi znsl6690)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the chromatic numbers corresponding to exponentially Ramsey sets
A. A. Sagdeev Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, Russia
Abstract:
In this paper, nontrivial upper bounds on the chromatic numbers of the spaces $\mathbb{R}^n_p=(\mathbb{R}^n, l_p)$ with forbidden monochromatic sets are proved. In the case of forbidden rectangular parallelepiped or a regular simplex, explicit exponential lower bounds on the chromatic numbers are obtained. Exact values of the chromatic numbers of the spaces $\mathbb{R}^n_p$ with forbidden regular simplex in case $p = \infty$ are found.
Key words and phrases:
chromatic number, Euclidean Ramsey theory, exponentially Ramsey set, regular simplex.
Received: 12.11.2018
Citation:
A. A. Sagdeev, “On the chromatic numbers corresponding to exponentially Ramsey sets”, Combinatorics and graph theory. Part X, Zap. Nauchn. Sem. POMI, 475, POMI, St. Petersburg, 2018, 174–189
Linking options:
https://www.mathnet.ru/eng/znsl6690 https://www.mathnet.ru/eng/znsl/v475/p174
|
Statistics & downloads: |
Abstract page: | 134 | Full-text PDF : | 35 | References: | 30 |
|