Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 475, Pages 137–173 (Mi znsl6689)  

On critically 3-connected graphs with exactly two vertices of degree 3. Part 2

A. V. Pastorab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
References:
Abstract: A graph $G$ is critically $3$-connected, if $G$ is $3$-connected and for any vertex $v\in V(G)$ the graph $G-v$ isn't $3$-connected. R. C. Entringer and P. J. Slater proved that any critically $3$-connected graph contains at least two vertices of degree $3$. In the previous paper we classify all such graphs with one additional condition: two vertices of degree $3$ are adjacent. In this paper we will consider the case of nonadjacent vertices of degree $3$.
Key words and phrases: connectivity, $3$-connected graph, critically $3$-connected graph.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0030
Received: 28.11.2018
Document Type: Article
UDC: 519.173.1
Language: Russian
Citation: A. V. Pastor, “On critically 3-connected graphs with exactly two vertices of degree 3. Part 2”, Combinatorics and graph theory. Part X, Zap. Nauchn. Sem. POMI, 475, POMI, St. Petersburg, 2018, 137–173
Citation in format AMSBIB
\Bibitem{Pas18}
\by A.~V.~Pastor
\paper On critically 3-connected graphs with exactly two vertices of degree~3. Part~2
\inbook Combinatorics and graph theory. Part~X
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 475
\pages 137--173
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6689}
Linking options:
  • https://www.mathnet.ru/eng/znsl6689
  • https://www.mathnet.ru/eng/znsl/v475/p137
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :25
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024