Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 474, Pages 222–232 (Mi znsl6681)  

Estimation of function in Gaussian stationary noise: new spectral condition

V. N. Solevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Saint Petersburg State University, Saint Petersburg, Russia
References:
Abstract: In the paper, we construct the lower and upper bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo-periodic function in stationary noise with the spectral density satisfying the new spectral condition.
Key words and phrases: pseudo periodic function, nonparametric estimating, process with stationary increments.
Received: 10.11.2018
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. N. Solev, “Estimation of function in Gaussian stationary noise: new spectral condition”, Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, POMI, St. Petersburg, 2018, 222–232
Citation in format AMSBIB
\Bibitem{Sol18}
\by V.~N.~Solev
\paper Estimation of function in Gaussian stationary noise: new spectral condition
\inbook Probability and statistics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 474
\pages 222--232
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6681}
Linking options:
  • https://www.mathnet.ru/eng/znsl6681
  • https://www.mathnet.ru/eng/znsl/v474/p222
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :31
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024