|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 474, Pages 199–212
(Mi znsl6679)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
M. V. Platonovaabc, S. V. Tsykincab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Saint Petersburg State University, Saint Petersburg, Russia
c Saint Petersburg State University, Saint Petersburg, Russia
Abstract:
We construct a probabilistic approximation of the Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$ in the right hand side.
Key words and phrases:
fractional derivative, Schrödinger equation, limit theorem, point Poisson field.
Received: 29.10.2018
Citation:
M. V. Platonova, S. V. Tsykin, “Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$”, Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, POMI, St. Petersburg, 2018, 199–212
Linking options:
https://www.mathnet.ru/eng/znsl6679 https://www.mathnet.ru/eng/znsl/v474/p199
|
Statistics & downloads: |
Abstract page: | 233 | Full-text PDF : | 56 | References: | 46 |
|