Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 474, Pages 139–148 (Mi znsl6674)  

An estimation problem for the intensity density of Poisson processes

I. A. Ibragimovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Saint Petersburg State University, Saint Petersburg, Russia
Full-text PDF (162 kB) Citations (1)
References:
Abstract: A Poisson process $X_\varepsilon(t)$ with the intensity density function $\varepsilon^{-1}\lambda(t)$ is observed on an interval $[a,b]$. The problem is to estimate the function $\lambda(t)$. It is known that the unknown function $\lambda(t)$ belongs to a given class of functions analytic in a given region $G\supset[a,b]$ and is bounded there by a given constant $M$. The parameter $\varepsilon$ is supposed to be known and we consider the problem as $\varepsilon\to0$.
Key words and phrases: Poisson proces, intensity, projective estimators.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00828_а
Received: 23.11.2018
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. A. Ibragimov, “An estimation problem for the intensity density of Poisson processes”, Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, POMI, St. Petersburg, 2018, 139–148
Citation in format AMSBIB
\Bibitem{Ibr18}
\by I.~A.~Ibragimov
\paper An estimation problem for the intensity density of Poisson processes
\inbook Probability and statistics. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 474
\pages 139--148
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6674}
Linking options:
  • https://www.mathnet.ru/eng/znsl6674
  • https://www.mathnet.ru/eng/znsl/v474/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :58
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024