|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 474, Pages 90–107
(Mi znsl6670)
|
|
|
|
Distribution of complex algebraic numbers on the unit circle
F. Götzea, A. Gusakovaa, Z. Kabluchkob, D. Zaporozhetsc a Faculty of Mathematics, Bielefeld University, P. O. Box 10 01 31, 33501 Bielefeld, Germany
b Münster University, Orléans-Ring 10, 48149 Münster, Germany
c St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
Abstract:
For $-\pi\leq\beta_1<\beta_2\leq\pi$ denote by $\Phi_{\beta_1,\beta_2}(Q)$ the number of algebraic numbers on the unit circle with arguments in $[\beta_1,\beta_2]$ of degree $2m$ and with elliptic height at most $Q$. We show that
$$
\Phi_{\beta_1,\beta_2}(Q)=Q^{m+1}\int\limits_{\beta_1}^{\beta_2}{p(t)}\,\mathrm{d}t+O\left(Q^m\,\log Q\right),\quad Q\to\infty,
$$
where $p(t)$ coincides up to a constant factor with the density of the roots of some random trigonometric polynomial. This density is calculated explicitly using the Edelman–Kostlan formula.
Key words and phrases:
Bombieri norm, distribution of algebraic numbers, integral polynomials, random trigonometric polynomials, real zeros.
Received: 06.10.2018
Citation:
F. Götze, A. Gusakova, Z. Kabluchko, D. Zaporozhets, “Distribution of complex algebraic numbers on the unit circle”, Probability and statistics. Part 27, Zap. Nauchn. Sem. POMI, 474, POMI, St. Petersburg, 2018, 90–107
Linking options:
https://www.mathnet.ru/eng/znsl6670 https://www.mathnet.ru/eng/znsl/v474/p90
|
|