|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 473, Pages 174–193
(Mi znsl6661)
|
|
|
|
Conformal limit for dimer models on the hexagonal lattice
D. Keatinga, N. Reshetikhinbca, A. Sridhard a Department of Mathematics, University of California, Berkeley, CA 94720, USA
b St. Petersburg University, Russia
c KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
d Google LLC
Abstract:
In this note we derive the asymptotical behavior of local correlation functions in dimer models on a domain of the hexagonal lattice in the continuum limit, when the size of the domain goes to infinity and parameters of the model scale appropriately.
Key words and phrases:
dimer models, Dirac fermions, Kasteleyn operator, Burgers equation, conformal correlation functions.
Received: 22.11.2018
Citation:
D. Keating, N. Reshetikhin, A. Sridhar, “Conformal limit for dimer models on the hexagonal lattice”, Questions of quantum field theory and statistical physics. Part 25, Zap. Nauchn. Sem. POMI, 473, POMI, St. Petersburg, 2018, 174–193; J. Math. Sci. (N. Y.), 242:5 (2019), 701–714
Linking options:
https://www.mathnet.ru/eng/znsl6661 https://www.mathnet.ru/eng/znsl/v473/p174
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 60 | References: | 25 |
|