|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 100–119
(Mi znsl664)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
A. V. Demyanov Saint-Petersburg State University
Abstract:
The problem of establishing necessary and sufficient conditions for l.s.c. under the PDE constraints is studied for some special class of functionals:
$$
(u,v,\chi)\mapsto\int_\Omega \biggl\{\chi(x)\cdot F^+(x,u(x),v(x))+(1-\chi(x))\cdot F^-(x,u(x),v(x))\biggr\}\,dx,
$$
with respect to the convergence $u_n\to u$ in measure,
$v_n\rightharpoonup v$ in $L_p(\Omega;\mathbb{R}^d)$, $\mathcal{A}v_n\to0$ in $W^{-1,p}(\Omega)$ and $\chi_n\rightharpoonup\chi$ in $L_p(\Omega)$, where $\chi_n\in
Z:=\{\chi\in L_\infty(\Omega):0\leq\chi(x)\leq1,\text{ a.e. }x\}$.
Here $\mathcal{A}v=\sum_{i=1}^N A^{(i)}\frac{\partial v}{\partial x_i}$ is a constant rank partial differential operator.
The main result is that if the characteristic cone of $\mathcal{A}$ has the full dimension, then
l.s.c. is equivalent to the fact that $F^\pm$ are both $\mathcal{A}$-quasiconvex and for a.e. $x\in\Omega$, for all $u\in\mathbb{R}^d$
$$
F^+(x,u,\cdot\,)-F^-(x,u,\cdot\,)\equiv C(x,u).
$$
As a corollary, we obtain the results for the functional
$$
(u,v,\chi)\mapsto\int_\Omega\chi(x)\cdot f(x,u(x),v(x))\,dx,
$$
with respect to the same convergence. We show, that this functional is l.s.c. iff
$$
f(x,u,v)\equiv g(x,u).
$$
Received: 20.12.2004
Citation:
A. V. Demyanov, “Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 100–119; J. Math. Sci. (N. Y.), 136:2 (2006), 3706–3717
Linking options:
https://www.mathnet.ru/eng/znsl664 https://www.mathnet.ru/eng/znsl/v318/p100
|
Statistics & downloads: |
Abstract page: | 156 | Full-text PDF : | 58 | References: | 40 |
|