Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 100–119 (Mi znsl664)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair

A. V. Demyanov

Saint-Petersburg State University
Full-text PDF (247 kB) Citations (1)
References:
Abstract: The problem of establishing necessary and sufficient conditions for l.s.c. under the PDE constraints is studied for some special class of functionals:
$$ (u,v,\chi)\mapsto\int_\Omega \biggl\{\chi(x)\cdot F^+(x,u(x),v(x))+(1-\chi(x))\cdot F^-(x,u(x),v(x))\biggr\}\,dx, $$
with respect to the convergence $u_n\to u$ in measure, $v_n\rightharpoonup v$ in $L_p(\Omega;\mathbb{R}^d)$, $\mathcal{A}v_n\to0$ in $W^{-1,p}(\Omega)$ and $\chi_n\rightharpoonup\chi$ in $L_p(\Omega)$, where $\chi_n\in Z:=\{\chi\in L_\infty(\Omega):0\leq\chi(x)\leq1,\text{ a.e. }x\}$. Here $\mathcal{A}v=\sum_{i=1}^N A^{(i)}\frac{\partial v}{\partial x_i}$ is a constant rank partial differential operator.
The main result is that if the characteristic cone of $\mathcal{A}$ has the full dimension, then l.s.c. is equivalent to the fact that $F^\pm$ are both $\mathcal{A}$-quasiconvex and for a.e. $x\in\Omega$, for all $u\in\mathbb{R}^d$
$$ F^+(x,u,\cdot\,)-F^-(x,u,\cdot\,)\equiv C(x,u). $$
As a corollary, we obtain the results for the functional
$$ (u,v,\chi)\mapsto\int_\Omega\chi(x)\cdot f(x,u(x),v(x))\,dx, $$
with respect to the same convergence. We show, that this functional is l.s.c. iff
$$ f(x,u,v)\equiv g(x,u). $$
Received: 20.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3706–3717
DOI: https://doi.org/10.1007/s10958-006-0194-7
Bibliographic databases:
UDC: 517
Language: English
Citation: A. V. Demyanov, “Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 100–119; J. Math. Sci. (N. Y.), 136:2 (2006), 3706–3717
Citation in format AMSBIB
\Bibitem{Dem04}
\by A.~V.~Demyanov
\paper Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 100--119
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120234}
\zmath{https://zbmath.org/?q=an:1066.49008}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3706--3717
\crossref{https://doi.org/10.1007/s10958-006-0194-7}
Linking options:
  • https://www.mathnet.ru/eng/znsl664
  • https://www.mathnet.ru/eng/znsl/v318/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :58
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024