|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 472, Pages 31–43
(Mi znsl6638)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Permanent preserving linear transformations of skew-symmetric matrices
M. V. Budrevichab, A. E. Gutermanab, M. A. Duffnerc a Lomonosov Moscow State University, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, Russia
c Universidade de Lisboa, Lisboa, Portugal
Abstract:
Let $Q_n(\mathbb{C})$ denote the space of all skew-symmetric $n\times n$ matrices over the complex field $\mathbb{C}$. The paper characterizes the linear mappings $T$: $Q_n(\mathbb{C})\to Q_n(\mathbb{C})$ that satisfy the condition $\operatorname{per}( T (A))=\operatorname{per}(A)$ for all $A \in Q_n(\mathbb{C})$ and an arbitrary $n>4$.
Key words and phrases:
determinant, permanent, immanant, linear maps, skew-symmetric matrices.
Received: 06.11.2018
Citation:
M. V. Budrevich, A. E. Guterman, M. A. Duffner, “Permanent preserving linear transformations of skew-symmetric matrices”, Computational methods and algorithms. Part XXXI, Zap. Nauchn. Sem. POMI, 472, POMI, St. Petersburg, 2018, 31–43
Linking options:
https://www.mathnet.ru/eng/znsl6638 https://www.mathnet.ru/eng/znsl/v472/p31
|
|