Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 471, Pages 150–167 (Mi znsl6631)  

Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions

M. A. Lyalinov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: A formal approach for the construction of the Green's function in a polygonal domain with the Dirichlet boundary conditions is proposed. The complex form of the Kontorovich–Lebedev transform and reduction to a system of integral equations is exploited. The far-field asymptotics of the wave field is discussed.
Key words and phrases: diffraction by a double wedge with polygonal boundary, scattering diagram, integral equations of the second kind, Kontorovich–Lebedev transform, Sommerfeld integral.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00668a
Received: 19.10.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 5, Pages 734–745
DOI: https://doi.org/10.1007/s10958-019-04575-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. A. Lyalinov, “Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 150–167; J. Math. Sci. (N. Y.), 243:5 (2019), 734–745
Citation in format AMSBIB
\Bibitem{Lya18}
\by M.~A.~Lyalinov
\paper Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions
\inbook Mathematical problems in the theory of wave propagation. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 471
\pages 150--167
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6631}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 5
\pages 734--745
\crossref{https://doi.org/10.1007/s10958-019-04575-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075161001}
Linking options:
  • https://www.mathnet.ru/eng/znsl6631
  • https://www.mathnet.ru/eng/znsl/v471/p150
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Çàïèñêè íàó÷íûõ ñåìèíàðîâ ÏÎÌÈ
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :63
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024