Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 75–99 (Mi znsl663)  

This article is cited in 1 scientific paper (total in 1 paper)

Compatible discretizations of second-order elliptic problems

P. Bocheva, M. Gunzburgerb

a Sandia National Laboratories
b School of Computational Science, Florida State University
Full-text PDF (257 kB) Citations (1)
References:
Abstract: Differential forms provide a powerful abstraction tool to encode the structure of many partial differential equation problems. Discrete differential forms offer the same possibility with regard to compatible discretizations of these problems, i.e., for finite-dimensional models that exhibit similar conservation properties and invariants. We consider the application of a discrete exterior calculus to the approximation of second-order elliptic boundary-value problems. We show that there exist three possible discretization patterns. In the context of finite element methods, two of these lead to familiar classes of discrete problems, while the third offers a novel perspective about least-squares variational principles, namely how they can arise from particular choices for discrete Hodge–$*$ operators.
Received: 01.11.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3691–3705
DOI: https://doi.org/10.1007/s10958-006-0193-8
Bibliographic databases:
UDC: 517
Language: English
Citation: P. Bochev, M. Gunzburger, “Compatible discretizations of second-order elliptic problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 75–99; J. Math. Sci. (N. Y.), 136:2 (2006), 3691–3705
Citation in format AMSBIB
\Bibitem{BocGun04}
\by P.~Bochev, M.~Gunzburger
\paper Compatible discretizations of second-order elliptic problems
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 75--99
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120233}
\zmath{https://zbmath.org/?q=an:1136.35343}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3691--3705
\crossref{https://doi.org/10.1007/s10958-006-0193-8}
Linking options:
  • https://www.mathnet.ru/eng/znsl663
  • https://www.mathnet.ru/eng/znsl/v318/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :59
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024