|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 471, Pages 99–112
(Mi znsl6627)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On the Cauchy problem for the wave equation with data on the boundary
M. N. Demchenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
We consider the Cauchy problem for the wave equation in $\Omega\times\mathbb R$ with data given on some part of the boundary $\partial\Omega\times\mathbb R$. We provide a reconstruction algorithm for this problem based on analytic expressions. Our result is applicable to the problem of determining nonstationary wave field arising in geophysics, photoacoustic tomography, tsunami wave source recovery.
Key words and phrases:
wave equation, Cauchy problem, wave field recovery, photoacoustic tomography.
Received: 01.11.2018
Citation:
M. N. Demchenko, “On the Cauchy problem for the wave equation with data on the boundary”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 99–112; J. Math. Sci. (N. Y.), 243:5 (2019), 698–706
Linking options:
https://www.mathnet.ru/eng/znsl6627 https://www.mathnet.ru/eng/znsl/v471/p99
|
Statistics & downloads: |
Abstract page: | 116 | Full-text PDF : | 41 | References: | 31 |
|