Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 471, Pages 38–58 (Mi znsl6623)  

This article is cited in 4 scientific papers (total in 4 papers)

Simplest test for two-dimensional dynamical inverse problem (the BC-method)

M. I. Belishev, N. A. Karazeeva

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (253 kB) Citations (4)
References:
Abstract: A dynamical system
\begin{align*} &u_{tt}-\Delta u-\nabla\ln\rho\cdot\nabla u=0&&\text{in}\quad\mathbb R^2_+\times(0,T)\\ &u|_{t=0}=u_t|_{t=0}=0&&\text{in}\quad\mathbb R^2_+\\ &u_y|_{y=0}=f&&\text{for}\quad0\leqslant t\leqslant T, \end{align*}
is under consideration, where $\mathbb R^2_+:=\{(x,y)\in\mathbb R^2\mid y>0\}$; $\rho=\rho(x,y)$ is a smooth positive function; $f=f(x,t)$ is a boundary control; $u=u^f(x,y,t)$ is a solution. With the system one associates a response operator $R\colon f\mapsto u^f|_{y=0}$. The inverse problem is to recover the function $\rho$ via the response operator. The short presentation of the local version of the BC-method, which recovers $\rho$ via the data given on a part of the boundary, is provided.
If $\rho$ is constant, the forward problem is solved in explicit form. In the paper, the corresponding representations for the solutions and response operator are derived. The way to use them for testing the BC-algorithm, which solves the inverse problem, is outlined. The goal of the paper is to extend the circle of the BC-method users, which are interested in numerical realization of methods for solving inverse problems.
Key words and phrases: $2$-dim dynamical inverse problem, BC-method, numerical testing, simplest test.
Received: 19.10.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 5, Pages 656–670
DOI: https://doi.org/10.1007/s10958-019-04567-5
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: M. I. Belishev, N. A. Karazeeva, “Simplest test for two-dimensional dynamical inverse problem (the BC-method)”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 38–58; J. Math. Sci. (N. Y.), 243:5 (2019), 656–670
Citation in format AMSBIB
\Bibitem{BelKar18}
\by M.~I.~Belishev, N.~A.~Karazeeva
\paper Simplest test for two-dimensional dynamical inverse problem (the BC-method)
\inbook Mathematical problems in the theory of wave propagation. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 471
\pages 38--58
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6623}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 5
\pages 656--670
\crossref{https://doi.org/10.1007/s10958-019-04567-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075195090}
Linking options:
  • https://www.mathnet.ru/eng/znsl6623
  • https://www.mathnet.ru/eng/znsl/v471/p38
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :30
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024