Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 470, Pages 179–193 (Mi znsl6619)  

This article is cited in 2 scientific papers (total in 2 papers)

Separability of Schur rings over an abelian group of order $4p$

G. K. Ryabov

Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (237 kB) Citations (2)
References:
Abstract: An $S$-ring (a Schur ring) is said to be separable with respect to a class of groups $\mathcal K$ if every its algebraic isomorphism to an $S$-ring over a group from $\mathcal K$ is induced by a combinatorial isomorphism. We prove that every Schur ring over an abelian group $G$ of order $4p$, where $p$ is a prime, is separable with respect to the class of abelian groups. This implies that the Weisfeiler–Leman dimension of the class of Cayley graphs over $G$ is at most 2.
Key words and phrases: Schur rings, Cayley graphs, Cayley graph isomorphism problem.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00051
Received: 01.05.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 4, Pages 624–632
DOI: https://doi.org/10.1007/s10958-019-04563-9
Bibliographic databases:
Document Type: Article
UDC: 512.542.3+519.178
Language: Russian
Citation: G. K. Ryabov, “Separability of Schur rings over an abelian group of order $4p$”, Problems in the theory of representations of algebras and groups. Part 33, Zap. Nauchn. Sem. POMI, 470, POMI, St. Petersburg, 2018, 179–193; J. Math. Sci. (N. Y.), 243:4 (2019), 624–632
Citation in format AMSBIB
\Bibitem{Rya18}
\by G.~K.~Ryabov
\paper Separability of Schur rings over an abelian group of order~$4p$
\inbook Problems in the theory of representations of algebras and groups. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 470
\pages 179--193
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6619}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 4
\pages 624--632
\crossref{https://doi.org/10.1007/s10958-019-04563-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074511848}
Linking options:
  • https://www.mathnet.ru/eng/znsl6619
  • https://www.mathnet.ru/eng/znsl/v470/p179
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :33
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024