Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 470, Pages 105–110 (Mi znsl6613)  

On a question about generalized congruence subgroups. I

V. A. Koibaevab

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
References:
Abstract: A system of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a field (or ring) $K$ is called a net of order $n$ over $K$ if $\sigma_{ir}\sigma_{rj}\subseteq{\sigma_{ij}}$ for all values of the indices $i,r,j$. The same system, but without the diagonal, is called an elementary net. A full or elementary net $\sigma=(\sigma_{ij})$ is called irreducible if all additive subgroups $\sigma_{ij}$ are different from zero. An elementary net $\sigma$ is closed if the subgroup $E(\sigma)$ does not contain new elementary transvections. This work is related to the question posed by Y. N. Nuzhin in connection with the question of V. M. Levchuk 15.46 from the Kourovka notebook about the admissibility (closedness) of the elementary net (carpet) $\sigma=(\sigma_{ij})$ over a field $K$. Let $J$ be an arbitrary a subset of the set $\{1,\dots,n\}$, $n\geq3$, we assume that the number $|J|=m$ of elements of the set $J$ satisfies the condition $2\leq m\leq n-1$. Let $R$ be a commutative integral domain (non-field) $1\in R$, $K$ be the quotient field of a $R$. We give an example of a net $\sigma=(\sigma_{ij})$ of order $n$ over a field $K$, for which the group $E(\sigma)\cap\langle t_{ij}(K)\colon i,j\in J\rangle$ is not contained in the group $\langle t_{ij}(\sigma_{ij})\colon i,j\in J\rangle$.
Key words and phrases: nets, elementary nets, closed elementary nets, elementary net group, carpets, carpet groups, admissible elementary nets, transvection.
Received: 17.01.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 4, Pages 573–576
DOI: https://doi.org/10.1007/s10958-019-04557-7
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: V. A. Koibaev, “On a question about generalized congruence subgroups. I”, Problems in the theory of representations of algebras and groups. Part 33, Zap. Nauchn. Sem. POMI, 470, POMI, St. Petersburg, 2018, 105–110; J. Math. Sci. (N. Y.), 243:4 (2019), 573–576
Citation in format AMSBIB
\Bibitem{Koi18}
\by V.~A.~Koibaev
\paper On a~question about generalized congruence subgroups.~I
\inbook Problems in the theory of representations of algebras and groups. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 470
\pages 105--110
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6613}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 4
\pages 573--576
\crossref{https://doi.org/10.1007/s10958-019-04557-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074828081}
Linking options:
  • https://www.mathnet.ru/eng/znsl6613
  • https://www.mathnet.ru/eng/znsl/v470/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :28
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024