|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 470, Pages 88–104
(Mi znsl6612)
|
|
|
|
This article is cited in 16 scientific papers (total in 16 papers)
Products of commutators on a general linear group over a division algebra
E. A. Egorchenkovaa, N. L. Gordeevab a Faculty of Mathematics, Russian State Pedagogical University of Herzen, St. Petersburg, Russia
b Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia
Abstract:
We consider the word maps $\widetilde w\colon\mathrm{GL}_m(D)^{2k}\to\mathrm{GL}_n(D)$ and $\widetilde w\colon D^{*2k}\to D^*$ for a word $w=\prod_{i=1}^k[x_i,y_i]$, where $D$ is the division algebra over a field $K$. If $\widetilde w(D^{*2k})=[D^*,D^*]$ we prove that $\widetilde w(\mathrm{GL}_n(D))\supset E_n(D)\setminus Z(E_n(D))$, where $E_n(D)$ is the subgroup of $\mathrm{GL}_n(D)$ which is generated by transvections and $Z(E_n(D))$ is its center. If, in addition, $n>2$, we prove $\widetilde w(E_n(D))\supset E_n(D)\setminus Z(E_n(D))$.
The proof of the result is based on an analogue of the “Gauss decomposition with prescribed semisimple part” (see, J. Algebra 229 (2000), no. 1, 314–332) of the group $\mathrm{GL}_n(D)$ which is also is considered in this paper.
Key words and phrases:
commutators, commutator length, word maps, general linear group, division algebras.
Received: 26.09.2018
Citation:
E. A. Egorchenkova, N. L. Gordeev, “Products of commutators on a general linear group over a division algebra”, Problems in the theory of representations of algebras and groups. Part 33, Zap. Nauchn. Sem. POMI, 470, POMI, St. Petersburg, 2018, 88–104; J. Math. Sci. (N. Y.), 243:4 (2019), 561–572
Linking options:
https://www.mathnet.ru/eng/znsl6612 https://www.mathnet.ru/eng/znsl/v470/p88
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 45 | References: | 26 |
|