Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 470, Pages 88–104 (Mi znsl6612)  

This article is cited in 16 scientific papers (total in 16 papers)

Products of commutators on a general linear group over a division algebra

E. A. Egorchenkovaa, N. L. Gordeevab

a Faculty of Mathematics, Russian State Pedagogical University of Herzen, St. Petersburg, Russia
b Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We consider the word maps $\widetilde w\colon\mathrm{GL}_m(D)^{2k}\to\mathrm{GL}_n(D)$ and $\widetilde w\colon D^{*2k}\to D^*$ for a word $w=\prod_{i=1}^k[x_i,y_i]$, where $D$ is the division algebra over a field $K$. If $\widetilde w(D^{*2k})=[D^*,D^*]$ we prove that $\widetilde w(\mathrm{GL}_n(D))\supset E_n(D)\setminus Z(E_n(D))$, where $E_n(D)$ is the subgroup of $\mathrm{GL}_n(D)$ which is generated by transvections and $Z(E_n(D))$ is its center. If, in addition, $n>2$, we prove $\widetilde w(E_n(D))\supset E_n(D)\setminus Z(E_n(D))$.
The proof of the result is based on an analogue of the “Gauss decomposition with prescribed semisimple part” (see, J. Algebra 229 (2000), no. 1, 314–332) of the group $\mathrm{GL}_n(D)$ which is also is considered in this paper.
Key words and phrases: commutators, commutator length, word maps, general linear group, division algebras.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.661.2016/1.4
Received: 26.09.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 4, Pages 561–572
DOI: https://doi.org/10.1007/s10958-019-04556-8
Bibliographic databases:
Document Type: Article
UDC: 512.7+512.64+512.81
Language: Russian
Citation: E. A. Egorchenkova, N. L. Gordeev, “Products of commutators on a general linear group over a division algebra”, Problems in the theory of representations of algebras and groups. Part 33, Zap. Nauchn. Sem. POMI, 470, POMI, St. Petersburg, 2018, 88–104; J. Math. Sci. (N. Y.), 243:4 (2019), 561–572
Citation in format AMSBIB
\Bibitem{EgoGor18}
\by E.~A.~Egorchenkova, N.~L.~Gordeev
\paper Products of commutators on a~general linear group over a~division algebra
\inbook Problems in the theory of representations of algebras and groups. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 470
\pages 88--104
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6612}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 4
\pages 561--572
\crossref{https://doi.org/10.1007/s10958-019-04556-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074856232}
Linking options:
  • https://www.mathnet.ru/eng/znsl6612
  • https://www.mathnet.ru/eng/znsl/v470/p88
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :45
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024