Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 42–59 (Mi znsl661)  

This article is cited in 2 scientific papers (total in 2 papers)

On exact solutions of one-dimensional two phase free boundary problems for parabolic equations

G. I. Bizhanova

Institute of Mathematics, Ministry of Education and Science of the Republic of Kazakhstan
Full-text PDF (223 kB) Citations (2)
References:
Abstract: The paper is concerned with auto-modelling solutions of one-dimensional two phase Stefan, Florin, and Verigin free boundary problems for parabolic equations whose initial and boundary data are not adjusted. It is shown that in the Stefan problem with “supercooling” a liquid can have a temperature less than the temperature of the phase transition, i.e., a liqued can be “supercooled” and solid “superheated.”
Received: 12.10.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3672–3681
DOI: https://doi.org/10.1007/s10958-006-0191-x
Bibliographic databases:
UDC: 517
Language: Russian
Citation: G. I. Bizhanova, “On exact solutions of one-dimensional two phase free boundary problems for parabolic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 42–59; J. Math. Sci. (N. Y.), 136:2 (2006), 3672–3681
Citation in format AMSBIB
\Bibitem{Biz04}
\by G.~I.~Bizhanova
\paper On exact solutions of one-dimensional two phase free boundary problems for parabolic equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 42--59
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120231}
\zmath{https://zbmath.org/?q=an:1082.35164}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3672--3681
\crossref{https://doi.org/10.1007/s10958-006-0191-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl661
  • https://www.mathnet.ru/eng/znsl/v318/p42
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :149
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024