|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 469, Pages 64–95
(Mi znsl6606)
|
|
|
|
The unimodularity of the induced toric tilings
V. G. Zhuravlevab a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Vladimir State University, Vladimir, Russia
Abstract:
Induced tilings $\mathcal T=\mathcal T|_\mathrm{Kr}$ of the $d$-dimensional torus $\mathbb T^d$, generated by the embedded karyon $\mathrm{Kr}$, are considered. The operations of differentiation are defined $\sigma\colon\mathcal T\to\mathcal T^\sigma$, as a result we get again induced partitions $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ of the same torus $\mathbb T^d$, generated by the derived karyon $\mathrm{Kr}^\sigma$. In the language of the karyons $\mathrm {Kr}$ the derivations of $\sigma$ reduce to a combination of geometric transformations of the space $\mathbb R^d$. It is proved that if the karyon $\mathrm{Kr}$ is unimodular, then it generates an induced tiling $\mathcal T=\mathcal T|_\mathrm{Kr}$ and the derivative karyon $\mathrm{Kr}^\sigma$ is unimodular again. So there exists the corresponding derivative tiling $\mathcal T^\sigma=\mathcal T|_{\mathrm {Kr}^\sigma}$. Using unimodular karyons one can build an infinite family of induced tilings $\mathcal T=\mathcal T(\alpha,\mathrm{Kr}_*)$ depending on a shift vector $\alpha$ of the torus $\mathbb T^d$ and the initial karyon $\mathrm{Kr}_*$. Two algorithms are presented for constructing such unimodular karyons of $\mathrm{Kr}_*$.
Key words and phrases:
shift vector, induced tilings, induced toric tilings, oblique shift, derived karyon, exchange transformation of a torus, derived tilings, contraction along a straight line.
Received: 08.02.2018
Citation:
V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 64–95; J. Math. Sci. (N. Y.), 242:4 (2019), 509–530
Linking options:
https://www.mathnet.ru/eng/znsl6606 https://www.mathnet.ru/eng/znsl/v469/p64
|
Statistics & downloads: |
Abstract page: | 144 | Full-text PDF : | 25 | References: | 28 |
|