Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 469, Pages 32–63 (Mi znsl6605)  

The karyon algorithm for decomposition into multidimensional continued fractions

V. G. Zhuravlevab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Vladimir State University, Vladimir, Russia
References:
Abstract: In this paper we propose a universal karyon algorithm, applicable to any set of real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$, which is a modification of the simplex-karyon algorithm. The main difference is an infinite sequence $\mathbf T=\mathbf T_0,\mathbf T_1,\dots,\mathbf T_n,\dots$ of $d$-dimensional parallelohedra $\mathbf T_n$ instead of the simplex sequence. Each parallelohedron $\mathbf T_n$ is obtained from the previous $\mathbf T_{n-1}$ by means of the differentiation $\mathbf T_n=\mathbf T^{\sigma_n}_{n-1}$. Parallelohedra $\mathbf T_n$ represent itself karyons of certain induced toric tilings. A certain algorithm ($\varrho$-strategy) of the choice of infinite sequences $\sigma=\{\sigma_1,\sigma_2,\dots,\sigma_n,\dots\}$ of derivations $\sigma_n$ is specified. This algorithm provides the convergence $\varrho(\mathbf T_n)\to0$ if $n\to+\infty$, where $\varrho(\mathbf T_n)$ denotes the radius of the parallelohedron $\mathbf T_n$ in the metric $\varrho$ chosen as an objective function. It is proved that the parallelohedra $\mathbf T_n$ have the minimum property, i.e. the karyon approximation algorithm is the best with respect to karyon $\mathbf T_n$-norms. Also we get an estimate for the approximation rate of real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$ by multidimensional continued fractions.
Key words and phrases: multidimensional continued fractions, the best approximations, simplex-karyon algorithm.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Received: 09.02.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 242, Issue 4, Pages 487–508
DOI: https://doi.org/10.1007/s10958-019-04492-7
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. G. Zhuravlev, “The karyon algorithm for decomposition into multidimensional continued fractions”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 32–63; J. Math. Sci. (N. Y.), 242:4 (2019), 487–508
Citation in format AMSBIB
\Bibitem{Zhu18}
\by V.~G.~Zhuravlev
\paper The karyon algorithm for decomposition into multidimensional continued fractions
\inbook Algebra and number theory. Part~1
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 469
\pages 32--63
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3885095}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 242
\issue 4
\pages 487--508
\crossref{https://doi.org/10.1007/s10958-019-04492-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072107119}
Linking options:
  • https://www.mathnet.ru/eng/znsl6605
  • https://www.mathnet.ru/eng/znsl/v469/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :58
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024