|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 469, Pages 160–174
(Mi znsl6601)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Number of non-zero cubic sums
N. D. Filonovab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Abstract:
The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural $q$, the explicit formulas for the number of non-zero sums among $S_q(a,0),\dots,S_q(a,q-1)$ are found.
Key words and phrases:
exponential cubic sums.
Received: 19.06.2018
Citation:
N. D. Filonov, “Number of non-zero cubic sums”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 160–174; J. Math. Sci. (N. Y.), 242:4 (2019), 575–585
Linking options:
https://www.mathnet.ru/eng/znsl6601 https://www.mathnet.ru/eng/znsl/v469/p160
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 52 | References: | 26 |
|