Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 469, Pages 160–174 (Mi znsl6601)  

This article is cited in 1 scientific paper (total in 1 paper)

Number of non-zero cubic sums

N. D. Filonovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (199 kB) Citations (1)
References:
Abstract: The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural $q$, the explicit formulas for the number of non-zero sums among $S_q(a,0),\dots,S_q(a,q-1)$ are found.
Key words and phrases: exponential cubic sums.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150008-а
Received: 19.06.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 242, Issue 4, Pages 575–585
DOI: https://doi.org/10.1007/s10958-019-04497-2
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: N. D. Filonov, “Number of non-zero cubic sums”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 160–174; J. Math. Sci. (N. Y.), 242:4 (2019), 575–585
Citation in format AMSBIB
\Bibitem{Fil18}
\by N.~D.~Filonov
\paper Number of non-zero cubic sums
\inbook Algebra and number theory. Part~1
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 469
\pages 160--174
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6601}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 242
\issue 4
\pages 575--585
\crossref{https://doi.org/10.1007/s10958-019-04497-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072122026}
Linking options:
  • https://www.mathnet.ru/eng/znsl6601
  • https://www.mathnet.ru/eng/znsl/v469/p160
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :52
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024