Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 14–41 (Mi znsl660)  

This article is cited in 1 scientific paper (total in 1 paper)

Convergence of discretized attractors for parabolic equations on the line

W.-J. Beyna, V. S. Kolezhukb, S. Yu. Pilyuginb

a Bielefeld University
b St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (254 kB) Citations (1)
References:
Abstract: We show that, for a semilinear parabolic equation on the real line satisfying a dissipativity condition, global attractors of time-space discretizations converge (with respect to the Hausdorff semi-distance) to the attractor of the continuous system as the discretization steps tend to zero. The attractors considered correspond to pairs of function spaces (in the sense of Babin–Vishik) with weighted and locally uniform norms (taken from Mielke–Schneider) used for both the continuous and discrete systems.
Received: 20.05.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3655–3671
DOI: https://doi.org/10.1007/s10958-006-0190-y
Bibliographic databases:
UDC: 517
Language: English
Citation: W.-J. Beyn, V. S. Kolezhuk, S. Yu. Pilyugin, “Convergence of discretized attractors for parabolic equations on the line”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 14–41; J. Math. Sci. (N. Y.), 136:2 (2006), 3655–3671
Citation in format AMSBIB
\Bibitem{BeyKolPil04}
\by W.-J.~Beyn, V.~S.~Kolezhuk, S.~Yu.~Pilyugin
\paper Convergence of discretized attractors for parabolic equations on the line
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 14--41
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl660}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120230}
\zmath{https://zbmath.org/?q=an:1081.37048}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3655--3671
\crossref{https://doi.org/10.1007/s10958-006-0190-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl660
  • https://www.mathnet.ru/eng/znsl/v318/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :63
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024