Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 468, Pages 126–137 (Mi znsl6594)  

This article is cited in 1 scientific paper (total in 1 paper)

I

The asymptotics of traces of paths in the Young and Schur graphs

F. V. Petrovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (205 kB) Citations (1)
References:
Abstract: Let $G$ be a graded graph with levels $V_0,V_1,\dots$. Fix $m$ and choose a vertex $v$ in $V_n$, where $n\ge m$. Consider the uniform measure on the paths from $V_0$ to the vertex $v$. Each such path has a unique vertex at the level $V_m$, and so a measure $\nu_v^m$ on $V_m$ is induced. It is natural to expect that such measures have a limit as the vertex $v$ goes to infinity in some “regular” way. We prove this (and compute the limit) for the Young and Schur graphs, for which regularity is understood as follows: the proportion of boxes contained in the first row and the first column goes to $0$. For the Young graph, this was essentially proved by Vershik and Kerov in 1981; our proof is more straightforward and elementary.
Key words and phrases: Plancherel measure, Young graph, polynomial identities, symmetric functions.
Funding agency Grant number
Russian Science Foundation 17-71-20153
Received: 23.09.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 240, Issue 5, Pages 587–593
DOI: https://doi.org/10.1007/s10958-019-04377-9
Bibliographic databases:
Document Type: Article
UDC: 519.172.3+519.179.4+519.212.2+512.643
Language: Russian
Citation: F. V. Petrov, “The asymptotics of traces of paths in the Young and Schur graphs”, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Zap. Nauchn. Sem. POMI, 468, POMI, St. Petersburg, 2018, 126–137; J. Math. Sci. (N. Y.), 240:5 (2019), 587–593
Citation in format AMSBIB
\Bibitem{Pet18}
\by F.~V.~Petrov
\paper The asymptotics of traces of paths in the Young and Schur graphs
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 468
\pages 126--137
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6594}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 240
\issue 5
\pages 587--593
\crossref{https://doi.org/10.1007/s10958-019-04377-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068124033}
Linking options:
  • https://www.mathnet.ru/eng/znsl6594
  • https://www.mathnet.ru/eng/znsl/v468/p126
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :77
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024