Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 468, Pages 267–280 (Mi znsl6593)  

This article is cited in 2 scientific papers (total in 2 papers)

II

Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits

Yu. Paliiab

a Institute of Applied Physics Academy of Sciences of Moldova, Kishinev, Moldova
b Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
Full-text PDF (179 kB) Citations (2)
References:
Abstract: A method for the construction of parameters on coadjoint orbits in $\mathfrak{sl}^*(n,\mathbb R)$ is suggested. The method is based on the fact that the parameters are invariant with respect to the action of vector fields normal relative to the Killing form to the tangent space of an orbit. The construction of parameters is reduced to the solution of a homogeneous system of linear equations.
Key words and phrases: Lie algebra, coadjoint orbit, foliation, Lie derivative, invariants.
Received: 11.09.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 240, Issue 5, Pages 678–687
DOI: https://doi.org/10.1007/s10958-019-04384-w
Bibliographic databases:
Document Type: Article
UDC: 512.816.2
Language: Russian
Citation: Yu. Palii, “Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits”, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Zap. Nauchn. Sem. POMI, 468, POMI, St. Petersburg, 2018, 267–280; J. Math. Sci. (N. Y.), 240:5 (2019), 678–687
Citation in format AMSBIB
\Bibitem{Pal18}
\by Yu.~Palii
\paper Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 468
\pages 267--280
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6593}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 240
\issue 5
\pages 678--687
\crossref{https://doi.org/10.1007/s10958-019-04384-w}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068111170}
Linking options:
  • https://www.mathnet.ru/eng/znsl6593
  • https://www.mathnet.ru/eng/znsl/v468/p267
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :38
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024