Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 468, Pages 177–201 (Mi znsl6580)  

This article is cited in 6 scientific papers (total in 6 papers)

II

On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems

V. Abgaryana, A. Khvedelidzebca, A. Torosyana

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, Russia
b A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
c Institute of Quantum Physics and Engineering Technologies, Georgian Technical University, Tbilisi, Georgia
References:
Abstract: A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich–Weyl kernel. It is shown that the moduli space of the Stratonovich–Weyl kernel is given by an intersection of the coadjoint orbit space of the $SU(N)$ group and a unit $(N-2)$-dimensional sphere. The general consideration is exemplified by a detailed description of the moduli space of $2,3$ and $4$-dimensional systems.
Key words and phrases: Wigner function, quasiprobability distribution, moduli space, group actions, Lie group orbits, Stratonovich–Weyl kernel.
Received: 11.09.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 240, Issue 5, Pages 617–633
DOI: https://doi.org/10.1007/s10958-019-04379-7
Bibliographic databases:
Document Type: Article
UDC: 512.816.2+530.145
Language: English
Citation: V. Abgaryan, A. Khvedelidze, A. Torosyan, “On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems”, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Zap. Nauchn. Sem. POMI, 468, POMI, St. Petersburg, 2018, 177–201; J. Math. Sci. (N. Y.), 240:5 (2019), 617–633
Citation in format AMSBIB
\Bibitem{AbgKhvTor18}
\by V.~Abgaryan, A.~Khvedelidze, A.~Torosyan
\paper On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 468
\pages 177--201
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6580}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 240
\issue 5
\pages 617--633
\crossref{https://doi.org/10.1007/s10958-019-04379-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068237295}
Linking options:
  • https://www.mathnet.ru/eng/znsl6580
  • https://www.mathnet.ru/eng/znsl/v468/p177
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :41
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024