Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 250, Pages 319–332 (Mi znsl658)  

Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media

Yu. B. Yanushanets

A. I. Voeikov Main Geophysical Observatory
Abstract: We consider fundamental solution $E(t,\mathbf x,\mathbf s;\mathbf s_0)$ of the Cauchy problem for the one-speed linear Boltzman Equation $(\partial/\partial t +c(s,\operatorname{grad}_\mathbf x)+\gamma)E(t,\mathbf x,\mathbf s;\mathbf s_0)=\gamma\nu\int f\bigl((\mathbf s,\mathbf s')\bigr)E(t,\mathbf x,\mathbf s';\mathbf s_0)ds'+\Omega\delta(t)\delta(\mathbf x)\delta(\mathbf s-\mathbf s_0)$, assumed to be true for any $(t,\mathbf x)\in R^{n+1}$, while for $t<0$ the condition $E(t,\mathbf x,\mathbf s;\mathbf s_0)=0$ holds. By using the Fourier–Laplace transform over space-time arguments the problem is reduced to investigation of an integral equation in the $\mathbf s$ argument. The uniqueness and existence of the initial problem for any fixed $\mathbf s$ within the space of tempered distributions with supports in the forward space-time cone are proved assuming $0<\nu\le1$. If the scattering media are of isotropic type $f(.)=1$ the solution of the integral equation is given in the explicit form. In the limit of “small mean free paths” various weak limits of the solution are obtained with the help of tauberian type theorem for distributions.
Received: 02.10.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 102, Issue 4, Pages 4339–4347
DOI: https://doi.org/10.1007/BF02673864
Bibliographic databases:
UDC: 517.968.72
Language: Russian
Citation: Yu. B. Yanushanets, “Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media”, Mathematical problems in the theory of wave propagation. Part 27, Zap. Nauchn. Sem. POMI, 250, POMI, St. Petersburg, 1998, 319–332; J. Math. Sci. (New York), 102:4 (2000), 4339–4347
Citation in format AMSBIB
\Bibitem{Yan98}
\by Yu.~B.~Yanushanets
\paper Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media
\inbook Mathematical problems in the theory of wave propagation. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 250
\pages 319--332
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701874}
\zmath{https://zbmath.org/?q=an:0978.35081}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 102
\issue 4
\pages 4339--4347
\crossref{https://doi.org/10.1007/BF02673864}
Linking options:
  • https://www.mathnet.ru/eng/znsl658
  • https://www.mathnet.ru/eng/znsl/v250/p319
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024