Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 215–237 (Mi znsl6576)  

Interpolation in a Bernstein space by means of approximation

N. A. Shirokovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.
Key words and phrases: functions of exponential type, Bernstein space, interpolation, approximation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00607-a
Received: 04.12.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 965–980
DOI: https://doi.org/10.1007/s10958-019-04597-z
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: N. A. Shirokov, “Interpolation in a Bernstein space by means of approximation”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 215–237; J. Math. Sci. (N. Y.), 243:6 (2019), 965–980
Citation in format AMSBIB
\Bibitem{Shi18}
\by N.~A.~Shirokov
\paper Interpolation in a~Bernstein space by means of approximation
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 215--237
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6576}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 965--980
\crossref{https://doi.org/10.1007/s10958-019-04597-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075207368}
Linking options:
  • https://www.mathnet.ru/eng/znsl6576
  • https://www.mathnet.ru/eng/znsl/v467/p215
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :47
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024