|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 215–237
(Mi znsl6576)
|
|
|
|
Interpolation in a Bernstein space by means of approximation
N. A. Shirokovab a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.
Key words and phrases:
functions of exponential type, Bernstein space, interpolation, approximation.
Received: 04.12.2017
Citation:
N. A. Shirokov, “Interpolation in a Bernstein space by means of approximation”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 215–237; J. Math. Sci. (N. Y.), 243:6 (2019), 965–980
Linking options:
https://www.mathnet.ru/eng/znsl6576 https://www.mathnet.ru/eng/znsl/v467/p215
|
Statistics & downloads: |
Abstract page: | 131 | Full-text PDF : | 47 | References: | 18 |
|