Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 244–254 (Mi znsl6575)  

About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball

N. A. Shirokovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $\mathbb B^n$ be the unit ball and $S^n$ the unit sphere in $\mathbb C^n$, $n\geq2$. Take $\alpha$, $0<\alpha<1$, and define a function $f$ on $\overline{\mathbb B^n}$ as follows:
$$ f(z)= (z_1-1)^\alpha e^{\frac{z_1+1}{z_1-1}},\quad z=(z_1,\dots,z_n)\in\overline{\mathbb B^n}. $$
The main result of the paper is the following.
Theorem. {\it If considered on the unit sphere $S^n$, the function $\zeta\mapsto|f(\zeta)|$ belongs to the Hölder class $H^\alpha(S^n)$; the function $f$ does not belong to the Hölder class $H^{\frac\alpha2+\varepsilon}(\overline{\mathbb B^n})$ for any $\varepsilon>0$.}
Key words and phrases: functions holomorphic in a ball, smooth functions, Hölder classes.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00607-a
Received: 23.04.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 985–992
DOI: https://doi.org/10.1007/s10958-019-04599-x
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: Russian
Citation: N. A. Shirokov, “About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 244–254; J. Math. Sci. (N. Y.), 243:6 (2019), 985–992
Citation in format AMSBIB
\Bibitem{Shi18}
\by N.~A.~Shirokov
\paper About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 244--254
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6575}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 985--992
\crossref{https://doi.org/10.1007/s10958-019-04599-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075054100}
Linking options:
  • https://www.mathnet.ru/eng/znsl6575
  • https://www.mathnet.ru/eng/znsl/v467/p244
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :36
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024