|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 244–254
(Mi znsl6575)
|
|
|
|
About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball
N. A. Shirokovab a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $\mathbb B^n$ be the unit ball and $S^n$ the unit sphere in $\mathbb C^n$, $n\geq2$. Take $\alpha$, $0<\alpha<1$, and define a function $f$ on $\overline{\mathbb B^n}$ as follows:
$$
f(z)= (z_1-1)^\alpha e^{\frac{z_1+1}{z_1-1}},\quad z=(z_1,\dots,z_n)\in\overline{\mathbb B^n}.
$$
The main result of the paper is the following.
Theorem. {\it If considered on the unit sphere $S^n$, the function $\zeta\mapsto|f(\zeta)|$ belongs to the Hölder class $H^\alpha(S^n)$; the function $f$ does not belong to the Hölder class $H^{\frac\alpha2+\varepsilon}(\overline{\mathbb B^n})$ for any $\varepsilon>0$.}
Key words and phrases:
functions holomorphic in a ball, smooth functions, Hölder classes.
Received: 23.04.2018
Citation:
N. A. Shirokov, “About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 244–254; J. Math. Sci. (N. Y.), 243:6 (2019), 985–992
Linking options:
https://www.mathnet.ru/eng/znsl6575 https://www.mathnet.ru/eng/znsl/v467/p244
|
Statistics & downloads: |
Abstract page: | 125 | Full-text PDF : | 36 | References: | 21 |
|