|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 238–243
(Mi znsl6574)
|
|
|
|
A note about approximation by trigonometric polynomials
N. A. Shirokovab a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $E=\bigcup^n_{k=1}[a_k,b_k]\subset\mathbb R$; if $n>1$ then we assume that the segments $[a_k,b_k]$ are pairwise disjoint. Suppose that the following property holds:
\begin{equation}
E\cap(E+2\pi\nu)=\varnothing,\qquad\nu\in\mathbb Z,\quad\nu\ne0.
\end{equation}
We denote by $H^{\omega+r}(E)$ the space of functions $f$ defined on $E$ such that $|f^{(r)}(x_2)-f^{(r)}(x_1)|\leq c_f\omega (|x_2-x_1|)$, $x_1,x_2\in E$, $f^{(0)}\equiv f$. We assume that a modulus of continuity $\omega$ satisfies the condition \begin{equation}
\int^x_0\frac{\omega(t)}t\,dt+x\int^\infty_x\frac{\omega(t)}{t^2}\,dt\leq c\omega(x).
\end{equation}
We find a constructive description of the space $H^{\omega+r}(E)$ in terms of the rate of nonuniform approximation of $f\in H^{\omega+r}(E)$ by means of trigonometric polynomials if $E$ satisfies (1) and $\omega$ satisfies (2).
Key words and phrases:
Hölder classes, approximation, trigonometric polynomials.
Received: 21.02.2018
Citation:
N. A. Shirokov, “A note about approximation by trigonometric polynomials”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 238–243; J. Math. Sci. (N. Y.), 243:6 (2019), 981–984
Linking options:
https://www.mathnet.ru/eng/znsl6574 https://www.mathnet.ru/eng/znsl/v467/p238
|
Statistics & downloads: |
Abstract page: | 148 | Full-text PDF : | 49 | References: | 22 |
|