Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 238–243 (Mi znsl6574)  

A note about approximation by trigonometric polynomials

N. A. Shirokovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $E=\bigcup^n_{k=1}[a_k,b_k]\subset\mathbb R$; if $n>1$ then we assume that the segments $[a_k,b_k]$ are pairwise disjoint. Suppose that the following property holds:
\begin{equation} E\cap(E+2\pi\nu)=\varnothing,\qquad\nu\in\mathbb Z,\quad\nu\ne0. \end{equation}
We denote by $H^{\omega+r}(E)$ the space of functions $f$ defined on $E$ such that $|f^{(r)}(x_2)-f^{(r)}(x_1)|\leq c_f\omega (|x_2-x_1|)$, $x_1,x_2\in E$, $f^{(0)}\equiv f$. We assume that a modulus of continuity $\omega$ satisfies the condition
\begin{equation} \int^x_0\frac{\omega(t)}t\,dt+x\int^\infty_x\frac{\omega(t)}{t^2}\,dt\leq c\omega(x). \end{equation}
We find a constructive description of the space $H^{\omega+r}(E)$ in terms of the rate of nonuniform approximation of $f\in H^{\omega+r}(E)$ by means of trigonometric polynomials if $E$ satisfies (1) and $\omega$ satisfies (2).
Key words and phrases: Hölder classes, approximation, trigonometric polynomials.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00607-a
Received: 21.02.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 981–984
DOI: https://doi.org/10.1007/s10958-019-04598-y
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: N. A. Shirokov, “A note about approximation by trigonometric polynomials”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 238–243; J. Math. Sci. (N. Y.), 243:6 (2019), 981–984
Citation in format AMSBIB
\Bibitem{Shi18}
\by N.~A.~Shirokov
\paper A note about approximation by trigonometric polynomials
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 238--243
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6574}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 981--984
\crossref{https://doi.org/10.1007/s10958-019-04598-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075342809}
Linking options:
  • https://www.mathnet.ru/eng/znsl6574
  • https://www.mathnet.ru/eng/znsl/v467/p238
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :49
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024