Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 143–150 (Mi znsl6571)  

Hausdorff measure on $n$-dimensional manifolds in $\mathbb R^m$ and $n$-dimensional variations

A. V. Potepun

Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: If $f\colon[a;b]\to\mathbb R^m$ is an injective continuous mapping and $f_1,\dots,f_m$ are coordinate functions of $f$, then the curve $f([a;b])$ is rectifiable if and only if the variations of all $f_k$ are finite. By Jordan's theorem for the length of the curve we have
$$ V_{f_i}([a;b])\le l(f([a;b]))\le\sum_{k=1}^mV_{f_k}([a;b]),\quad i=1,\dots,m. $$
The length $l(f([a;b]))$ is $H_1(f([a;b]))$, where $H_1$ is one-dimensional Hausdorff measure in $\mathbb R^m$.
In this article, the notion of the variation $V_f[a;b]$ of a function
$$ f\colon[a;b]\to\mathbb R $$
is generalized to the variation $V_f(A)$ of a continuous mapping $f\colon G\to\mathbb R^n$, where $G$ is an open subset of $\mathbb R^n$, on a set $A\subset G$, $A=\bigcup_{i\in I}K_i$, where $I$ is countable, all $K_i$ are compact.
Suppose $f\colon G\to\mathbb R^m$, $G\subset\mathbb R^n$, $n\le m$, $f_1,\dots,f_m$ are the coordinate functions of $f$. If $1\le i_1<i_2<\dots<i_n\le m$, $\alpha=\{i_1,\dots,i_n\}$, then $f_\alpha$ is the mapping with the coordinate functions $f_{i_1},\dots,f_{i_n}$:
$$ f_\alpha\colon \begin{cases} x_{i_1}=f_{i_1}(t_1,\dots,t_n)\\ \dots\dots\dots\dots\dots\dots\\ x_{i_n}=f_{i_n}(t_1,\dots,t_n) \end{cases} \quad(t_1,\dots,t_n)\in G. $$
The main result states that if $f$ is a continuous injective mapping, $f\colon G\to\mathbb R^m$, $n\le m$, $G$ is an open subset of $\mathbb R^n$, $A\subset G$, $A=\bigcup_{i\in I}K_i$, $I$ is countable, all $K_i$ are compact, then
$$ V_{f_\alpha}(A)\le H_n(f(A)), $$
where $V_{f_\alpha}(A)$ is the variation of $f_\alpha$ on $A$, $H_n$ is $n$-dimensional Hausdorff measure in $\mathbb R^m$.
Key words and phrases: variation of continuous mapping, Jordan's theorem, Hausdorff measure.
Received: 04.06.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 917–921
DOI: https://doi.org/10.1007/s10958-019-04592-4
Bibliographic databases:
Document Type: Article
UDC: 517.518.114
Language: Russian
Citation: A. V. Potepun, “Hausdorff measure on $n$-dimensional manifolds in $\mathbb R^m$ and $n$-dimensional variations”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 143–150; J. Math. Sci. (N. Y.), 243:6 (2019), 917–921
Citation in format AMSBIB
\Bibitem{Pot18}
\by A.~V.~Potepun
\paper Hausdorff measure on $n$-dimensional manifolds in~$\mathbb R^m$ and $n$-dimensional variations
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 143--150
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6571}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 917--921
\crossref{https://doi.org/10.1007/s10958-019-04592-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075198715}
Linking options:
  • https://www.mathnet.ru/eng/znsl6571
  • https://www.mathnet.ru/eng/znsl/v467/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :39
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024