|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 128–142
(Mi znsl6570)
|
|
|
|
Bellman function for a parametric family of extremal problems in $\mathrm{BMO}$
N. N. Osipovab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b National Research University "Higher School of Economics", St. Petersburg, Russia
Abstract:
Suppose $I$ is an interval on the real line and $\langle\cdot\rangle_I$ is the corresponding integral average. We describe how the Bellman function for the functional $F(\varphi)=\langle f\circ\varphi\rangle_I$, $\varphi\in\mathrm{BMO}(I)$, varies when $f$ runs over a certain parametric family of functions. Thereby, we once again demonstrate the work of the methods developed recently by V. I. Vasyunin, P. B. Zatitskiy, P. Ivanishvili, D. M. Stolyarov, and the author.
Key words and phrases:
Bellman function, $\mathrm{BMO}$.
Received: 03.09.2018
Citation:
N. N. Osipov, “Bellman function for a parametric family of extremal problems in $\mathrm{BMO}$”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 128–142; J. Math. Sci. (N. Y.), 243:6 (2019), 907–916
Linking options:
https://www.mathnet.ru/eng/znsl6570 https://www.mathnet.ru/eng/znsl/v467/p128
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 41 | References: | 31 |
|