Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 116–127 (Mi znsl6569)  

This article is cited in 2 scientific papers (total in 2 papers)

Correction up to functions with sparce spectrum and uniformly convergent Fourier integral representation: the group $\mathbb R^n$

S. V. Kislyakov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (188 kB) Citations (2)
References:
Abstract: This is an $\mathbb R^n$-conterpart of certain considerations on a similar subject for compact Abelian groups exposed by P. Ivanishvili and the author in 2010. The main difference with that paper is that certain notions and results of measure theory should be invoked in the case of $\mathbb R^n$.
Key words and phrases: correction theorem.
Received: 30.08.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 900–906
DOI: https://doi.org/10.1007/s10958-019-04590-6
Bibliographic databases:
Document Type: Article
UDC: 517.58
Language: Russian
Citation: S. V. Kislyakov, “Correction up to functions with sparce spectrum and uniformly convergent Fourier integral representation: the group $\mathbb R^n$”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 116–127; J. Math. Sci. (N. Y.), 243:6 (2019), 900–906
Citation in format AMSBIB
\Bibitem{Kis18}
\by S.~V.~Kislyakov
\paper Correction up to functions with sparce spectrum and uniformly convergent Fourier integral representation: the group~$\mathbb R^n$
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 116--127
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6569}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 900--906
\crossref{https://doi.org/10.1007/s10958-019-04590-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074997376}
Linking options:
  • https://www.mathnet.ru/eng/znsl6569
  • https://www.mathnet.ru/eng/znsl/v467/p116
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :92
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024