Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 73–84 (Mi znsl6566)  

This article is cited in 3 scientific papers (total in 3 papers)

On products of Weierstrass sigma functions

A. A. Illarionovab

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
b Pacific National University, Khabarovsk, Russia
Full-text PDF (185 kB) Citations (3)
References:
Abstract: We prove the following result. Let $f\colon\mathbb C\to\mathbb C$ be an even entire function. Let there exist $\alpha_j,\beta_j\colon\mathbb C\to\mathbb C$ with
$$ f(x+y) f(x-y) = \sum_{j=1}^4\alpha_j(x)\beta_j(y),\qquad x,y\in\mathbb C. $$
Then $f(z)=\sigma_L(z)\cdot\sigma_\Lambda(z)\cdot e^{Az^2+C}$, where $L$ and $\Lambda$ are lattices in $\mathbb C$, $\sigma_L$ is the Weierstrass sigma function associated to the lattice $L$, and $A,C\in\mathbb C$.
Key words and phrases: elliptic functions, functional equation, the Weierstrass sigma function, addition theorems.
Received: 29.01.2018
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 243, Issue 6, Pages 872–879
DOI: https://doi.org/10.1007/s10958-019-04587-1
Bibliographic databases:
Document Type: Article
UDC: 517.58
Language: Russian
Citation: A. A. Illarionov, “On products of Weierstrass sigma functions”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 73–84; J. Math. Sci. (N. Y.), 243:6 (2019), 872–879
Citation in format AMSBIB
\Bibitem{Ill18}
\by A.~A.~Illarionov
\paper On products of Weierstrass sigma functions
\inbook Investigations on linear operators and function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 467
\pages 73--84
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6566}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 243
\issue 6
\pages 872--879
\crossref{https://doi.org/10.1007/s10958-019-04587-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075204469}
Linking options:
  • https://www.mathnet.ru/eng/znsl6566
  • https://www.mathnet.ru/eng/znsl/v467/p73
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024