|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 73–84
(Mi znsl6566)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On products of Weierstrass sigma functions
A. A. Illarionovab a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
b Pacific National University, Khabarovsk, Russia
Abstract:
We prove the following result. Let $f\colon\mathbb C\to\mathbb C$ be an even entire function. Let there exist $\alpha_j,\beta_j\colon\mathbb C\to\mathbb C$ with
$$
f(x+y) f(x-y) = \sum_{j=1}^4\alpha_j(x)\beta_j(y),\qquad x,y\in\mathbb C.
$$
Then $f(z)=\sigma_L(z)\cdot\sigma_\Lambda(z)\cdot e^{Az^2+C}$, where $L$ and $\Lambda$ are lattices in $\mathbb C$, $\sigma_L$ is the Weierstrass sigma function associated to the lattice $L$, and $A,C\in\mathbb C$.
Key words and phrases:
elliptic functions, functional equation, the Weierstrass sigma function, addition theorems.
Received: 29.01.2018
Citation:
A. A. Illarionov, “On products of Weierstrass sigma functions”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 73–84; J. Math. Sci. (N. Y.), 243:6 (2019), 872–879
Linking options:
https://www.mathnet.ru/eng/znsl6566 https://www.mathnet.ru/eng/znsl/v467/p73
|
Statistics & downloads: |
Abstract page: | 260 | Full-text PDF : | 68 | References: | 39 |
|