|
Zapiski Nauchnykh Seminarov POMI, 2018, Volume 467, Pages 67–72
(Mi znsl6564)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Extended Cesàro operators between Hardy and Bergman spaces on the complex ball
E. S. Dubtsov St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
We characterize those holomorphic symbols $g$ for which the extended Cesàro operator $V_g$ maps the Hardy space $H^p(B)$ into the weighted Bergman space $A^q_\beta(B)$, $0<p<q<\infty$, $\beta>-1$, on the unit ball $B$ of $\mathbb C^d$.
Key words and phrases:
Hardy space, Bergman space, extended Cesàro operator.
Received: 27.08.2018
Citation:
E. S. Dubtsov, “Extended Cesàro operators between Hardy and Bergman spaces on the complex ball”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 67–72; J. Math. Sci. (N. Y.), 243:6 (2019), 867–871
Linking options:
https://www.mathnet.ru/eng/znsl6564 https://www.mathnet.ru/eng/znsl/v467/p67
|
|