Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 250, Pages 244–262 (Mi znsl653)  

On attenuation in layered porous Biot media and their effective models

L. A. Molotkova, A. V. Bakulinb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Abstract: The effective models of periodic layered porous Biot media possessing viscosity and relaxation are established and investigated. These models correspond to the generalized Biot media with the equations containing as a rule exponential kernels of relaxation and viscosity. There exist such kernels even if in the initial medium relaxation is absent. The inequalities, which must be satisfied by the parameters of kernels, are established by means of the energy investigations. The partial cases when the effective models possess no viscosity or no relaxation are pointed out.
Received: 28.11.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 102, Issue 4, Pages 4291–4303
DOI: https://doi.org/10.1007/BF02673859
Bibliographic databases:
UDC: 517.934+550.34
Language: Russian
Citation: L. A. Molotkov, A. V. Bakulin, “On attenuation in layered porous Biot media and their effective models”, Mathematical problems in the theory of wave propagation. Part 27, Zap. Nauchn. Sem. POMI, 250, POMI, St. Petersburg, 1998, 244–262; J. Math. Sci. (New York), 102:4 (2000), 4291–4303
Citation in format AMSBIB
\Bibitem{MolBak98}
\by L.~A.~Molotkov, A.~V.~Bakulin
\paper On attenuation in layered porous Biot media and their effective models
\inbook Mathematical problems in the theory of wave propagation. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 250
\pages 244--262
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701869}
\zmath{https://zbmath.org/?q=an:1030.74019}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 102
\issue 4
\pages 4291--4303
\crossref{https://doi.org/10.1007/BF02673859}
Linking options:
  • https://www.mathnet.ru/eng/znsl653
  • https://www.mathnet.ru/eng/znsl/v250/p244
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024