Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 465, Pages 13–26 (Mi znsl6528)  

Continuous time multidimensional walks as an integrable model

N. Bogoliubovab

a St.-Petersburg Department of Steklov Institute of Mathematics, RAS, Fontanka 27, St.-Petersburg, Russia
b ITMO University, Kronverksky 49, St.-Petersburg, Russia
References:
Abstract: Continuous time walks in multidimensional symplectical lattices are considered. It is shown that the generating functions of random walks and the transition amplitudes of continuous time quantum walks are expressed through the dynamical correlation functions of the exactly solvable model describing strongly correlated bosons on a chain, the so-called phase model. The number of random lattice paths of fixed number of steps connecting the starting and ending points of the multidimensional lattice is expressed through the solutions of Bethe equations of the phase model. Its asymptotic is obtained in the limit of the large number of steps.
Key words and phrases: continuous time walks, random walks, quantum walks, multidimensional lattice, integrable models, correlation functions, Schur functions.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00296
Partially supported by RFBR grant no. 16-01-00296.
Received: 04.12.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 6, Pages 769–778
DOI: https://doi.org/10.1007/s10958-019-04274-1
Document Type: Article
UDC: 517.9
Language: English
Citation: N. Bogoliubov, “Continuous time multidimensional walks as an integrable model”, Questions of quantum field theory and statistical physics. Part 24, Zap. Nauchn. Sem. POMI, 465, POMI, St. Petersburg, 2017, 13–26; J. Math. Sci. (N. Y.), 238:6 (2019), 769–778
Citation in format AMSBIB
\Bibitem{Bog17}
\by N.~Bogoliubov
\paper Continuous time multidimensional walks as an integrable model
\inbook Questions of quantum field theory and statistical physics. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 465
\pages 13--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6528}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 6
\pages 769--778
\crossref{https://doi.org/10.1007/s10958-019-04274-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl6528
  • https://www.mathnet.ru/eng/znsl/v465/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :39
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024