Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 464, Pages 132–168 (Mi znsl6526)  

This article is cited in 6 scientific papers (total in 6 papers)

Turán type results for distance graphs in infinitesimal plane layer

L. E. Shabanov

Department of Innovations and High Technology, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
Full-text PDF (472 kB) Citations (6)
References:
Abstract: In this paper we obtain the lower bound of number of edges in a unit distance graph $\Gamma$ in an infinitesimal plane layer $\mathbb R^2\times[0,\varepsilon]^d$ which compares number of edges $e(\Gamma)$, number of vertices $\nu(\Gamma)$ and independence number $\alpha(\Gamma)$. Our bound $e(\Gamma)\ge\frac{19\nu\Gamma)-50\alpha(\Gamma)}3$ is generalizing of previous bound for distance graphs in plane and a strong upgrade of Turán's bound when $\frac15\le\frac{\alpha(\Gamma)}{\nu(\Gamma)}\le\frac27$.
Key words and phrases: distance graph, independence number, Turán type bounds.
Received: 03.11.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 5, Pages 554–578
DOI: https://doi.org/10.1007/s10958-018-4133-1
Document Type: Article
UDC: 519.173
Language: Russian
Citation: L. E. Shabanov, “Turán type results for distance graphs in infinitesimal plane layer”, Combinatorics and graph theory. Part IX, Zap. Nauchn. Sem. POMI, 464, POMI, St. Petersburg, 2017, 132–168; J. Math. Sci. (N. Y.), 236:5 (2019), 554–578
Citation in format AMSBIB
\Bibitem{Sha17}
\by L.~E.~Shabanov
\paper Tur\'an type results for distance graphs in infinitesimal plane layer
\inbook Combinatorics and graph theory. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 464
\pages 132--168
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6526}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 5
\pages 554--578
\crossref{https://doi.org/10.1007/s10958-018-4133-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl6526
  • https://www.mathnet.ru/eng/znsl/v464/p132
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :38
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024