|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 263–268
(Mi znsl6516)
|
|
|
|
An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix
L. Yu. Kolotilina St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
The new upper bound
$$
\lambda_\mathrm{max}(A)\le\sum_{k=1}^{p+1}\max_{i\equiv k\pmod{p+1}}\lambda_\mathrm{max}(A_{ii})
$$
for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix $A=(A_{ij})$ of block semibandwidth $p$ is suggested. In the special case where the diagonal blocks of $A$ are identity matrices, the latter bound reduces to the bound $\lambda_\mathrm{max}(A)\le p+1$, depending on $p$ only, which improves the bounds established for such matrices earlier and extends the bound $\lambda_\mathrm{max}(A)\le2$, old known for $p=1$, i.e., for block tridiagonal matrices, to the general case $p\ge1$.
Key words and phrases:
Hermitian positive semidefinite matrix, block matrix, block semibandwidth, largest eigenvalue, upper bound.
Received: 25.10.2017
Citation:
L. Yu. Kolotilina, “An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 263–268; J. Math. Sci. (N. Y.), 232:6 (2018), 917–920
Linking options:
https://www.mathnet.ru/eng/znsl6516 https://www.mathnet.ru/eng/znsl/v463/p263
|
Statistics & downloads: |
Abstract page: | 204 | Full-text PDF : | 50 | References: | 31 |
|