Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 263–268 (Mi znsl6516)  

An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix

L. Yu. Kolotilina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: The new upper bound
$$ \lambda_\mathrm{max}(A)\le\sum_{k=1}^{p+1}\max_{i\equiv k\pmod{p+1}}\lambda_\mathrm{max}(A_{ii}) $$
for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix $A=(A_{ij})$ of block semibandwidth $p$ is suggested. In the special case where the diagonal blocks of $A$ are identity matrices, the latter bound reduces to the bound $\lambda_\mathrm{max}(A)\le p+1$, depending on $p$ only, which improves the bounds established for such matrices earlier and extends the bound $\lambda_\mathrm{max}(A)\le2$, old known for $p=1$, i.e., for block tridiagonal matrices, to the general case $p\ge1$.
Key words and phrases: Hermitian positive semidefinite matrix, block matrix, block semibandwidth, largest eigenvalue, upper bound.
Received: 25.10.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 6, Pages 917–920
DOI: https://doi.org/10.1007/s10958-018-3918-6
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 263–268; J. Math. Sci. (N. Y.), 232:6 (2018), 917–920
Citation in format AMSBIB
\Bibitem{Kol17}
\by L.~Yu.~Kolotilina
\paper An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix
\inbook Computational methods and algorithms. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 463
\pages 263--268
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6516}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 6
\pages 917--920
\crossref{https://doi.org/10.1007/s10958-018-3918-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049149543}
Linking options:
  • https://www.mathnet.ru/eng/znsl6516
  • https://www.mathnet.ru/eng/znsl/v463/p263
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :50
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024