|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 132–141
(Mi znsl6510)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Binormal matrices
Kh. D. Ikramov Lomonosov Moscow State University, Moscow, Russia
Abstract:
A square complex matrix $A$ is said to be binormal if the associated matrices $A^*A$ and $AA^*$ commute. This matrix class yields a meaningful finite-dimensional extension for the concept of normality. The paper can be regarded as a survey of the properties of binormal matrices.
Key words and phrases:
binormal matrices, hyponormal matrices, quasinormal matrices, field of values, diagonal shift.
Received: 31.01.2017
Citation:
Kh. D. Ikramov, “Binormal matrices”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 132–141; J. Math. Sci. (N. Y.), 232:6 (2018), 830–836
Linking options:
https://www.mathnet.ru/eng/znsl6510 https://www.mathnet.ru/eng/znsl/v463/p132
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 71 | References: | 47 |
|