|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 94–111
(Mi znsl6509)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the determinantal range of matrix products
A. Gutermana, G. Soaresb a Lomonosov Moscow State University, Russia
b Universidade de Trás-os-Montes e Alto Douro, Portugal
Abstract:
Let matrices $A,C\in M_n$ have eigenvalues $\alpha_1,\dots,\alpha_n$ and $\gamma_1,\dots,\gamma_n$, respectively. The set $D_C(A)=\{\det(A-UCU^*)\colon U\in M_n,\ U^*U=I_n\}$ of complex numbers is called the $C$-determinantal range of $A$. The paper studies various conditions under which the relation $D_C(RS)=D_C(SR)$ holds for some matrices $R$ and $S$.
Key words and phrases:
$C-$determinantal range, numerical range, matrix products.
Received: 01.11.2017
Citation:
A. Guterman, G. Soares, “On the determinantal range of matrix products”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 94–111; J. Math. Sci. (N. Y.), 232:6 (2018), 805–815
Linking options:
https://www.mathnet.ru/eng/znsl6509 https://www.mathnet.ru/eng/znsl/v463/p94
|
Statistics & downloads: |
Abstract page: | 137 | Full-text PDF : | 50 | References: | 24 |
|