|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 25–35
(Mi znsl6504)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the Kräuter–Seifter theorem on permanent divisibility
M. V. Budrevich, A. E. Guterman, K. A. Taranin Lomonosov Moscow State University, Moscow, Russia
Abstract:
The paper investigates the divisibility of the permanent function of $(1,-1)$-matrices by different powers of 2. It is shown that the Kräuter–Seifter bound is the best possible for generic $(1,-1)$-matrices.
Key words and phrases:
permanent, divisibility.
Received: 02.11.2017
Citation:
M. V. Budrevich, A. E. Guterman, K. A. Taranin, “On the Kräuter–Seifter theorem on permanent divisibility”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 25–35; J. Math. Sci. (N. Y.), 232:6 (2018), 760–767
Linking options:
https://www.mathnet.ru/eng/znsl6504 https://www.mathnet.ru/eng/znsl/v463/p25
|
|