Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 463, Pages 5–12 (Mi znsl6502)  

This article is cited in 1 scientific paper (total in 1 paper)

Temporal components of a semigroup of nonnegative matrices. A generalization of Minc's theorem on the structure of an irreducible matrix

Yu. A. Al'pina, V. S. Al'pinab

a Kazan (Volga Region) Federal University, Kazan, Russia
b Kazan National Research Technological University, Kazan, Russia
Full-text PDF (154 kB) Citations (1)
References:
Abstract: The notion of a temporal component of a semigroup of block-monomial nonnegative matrices is introduced. For such semigroups, a generalization of Mink's theorem on the structure of an irreducible matrix is proved.
Key words and phrases: irreducible nonnegative matrix, Frobenius form, semigroup of nonnegative matrices.
Received: 27.10.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 6, Pages 747–751
DOI: https://doi.org/10.1007/s10958-018-3903-0
Bibliographic databases:
Document Type: Article
UDC: 512.6
Language: Russian
Citation: Yu. A. Al'pin, V. S. Al'pina, “Temporal components of a semigroup of nonnegative matrices. A generalization of Minc's theorem on the structure of an irreducible matrix”, Computational methods and algorithms. Part XXX, Zap. Nauchn. Sem. POMI, 463, POMI, St. Petersburg, 2017, 5–12; J. Math. Sci. (N. Y.), 232:6 (2018), 747–751
Citation in format AMSBIB
\Bibitem{AlpAlp17}
\by Yu.~A.~Al'pin, V.~S.~Al'pina
\paper Temporal components of a~semigroup of nonnegative matrices. A~generalization of Minc's theorem on the structure of an irreducible matrix
\inbook Computational methods and algorithms. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 463
\pages 5--12
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6502}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 6
\pages 747--751
\crossref{https://doi.org/10.1007/s10958-018-3903-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048972780}
Linking options:
  • https://www.mathnet.ru/eng/znsl6502
  • https://www.mathnet.ru/eng/znsl/v463/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :67
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024