|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 348, Pages 147–164
(Mi znsl65)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Functional a posteriori estimates
for elliptic variational inequalities
S. I. Repin St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
In the paper, we present a new way of the derivation
of computable estimates for the difference between exact
solutions of elliptic variational inequalities and arbitrary
functions in the respective energy space that satisfy the main
(Dirichlét) boundary conditions. Unlike the method exposed
in [11, 18], we derive the estimates by certain
transformations of variational inequalities without the
attraction of duality arguments. For linear elliptic and
parabolic problems this method was suggested in [16, 17].
In the present paper, we consider two different types of
variational inequalities (also called variational
inequalities of the first and second kinds [10]). The
techniques discussed can be applied to other nonlinear
problems related to variational inequalities.
Received: 26.06.2007
Citation:
S. I. Repin, “Functional a posteriori estimates
for elliptic variational inequalities”, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Zap. Nauchn. Sem. POMI, 348, POMI, St. Petersburg, 2007, 147–164; J. Math. Sci. (N. Y.), 152:5 (2008), 702–712
Linking options:
https://www.mathnet.ru/eng/znsl65 https://www.mathnet.ru/eng/znsl/v348/p147
|
Statistics & downloads: |
Abstract page: | 315 | Full-text PDF : | 76 | References: | 43 |
|