Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 462, Pages 103–111 (Mi znsl6499)  

Regularity of maximum distance minimizers

Y. Teplitskaya

Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We study properties of sets having the minimum length (one-dimensional Hausdorff measure) over the class of closed connected sets $\Sigma\subset\mathbb R^2$ satisfying the inequality $\max_{y\in M}\operatorname{dist}(y,\Sigma)\leq r$ for a given compact set $M\subset\mathbb R^2$ and some given $r>0$. Such sets play the role of the shortest possible pipelines arriving at a distance at most $r$ to every point of $M$, where $M$ is the set of customers of the pipeline. In this paper, it is proved that each maximum distance minimizer is a union of a finite number of curves having one-sided tangent lines at each point. This shows that a maximum distance minimizer is isotopic to a finite Steiner tree even for a “bad” compact set $M$, which distinguishes it from a solution of the Steiner problem (an example of a Steiner tree with an infinite number of branching points can be found in a paper by Paolini, Stepanov, and Teplitskaya). Moreover, the angle between these lines at each point of a maximum distance minimizer is greater than or equal to $2\pi/3$. Also, we classify the behavior of a minimizer in a neighborhood of any point of $\Sigma$. In fact, all the results are proved for a more general class of local minimizers.
Key words and phrases: Steiner tree, locally minimal network, maximal distance minimizer, regularity.
Funding agency Grant number
Russian Science Foundation 14-21-00035
Received: 26.10.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 2, Pages 164–169
DOI: https://doi.org/10.1007/s10958-018-3866-1
Bibliographic databases:
Document Type: Article
UDC: 514.177.2
Language: Russian
Citation: Y. Teplitskaya, “Regularity of maximum distance minimizers”, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Zap. Nauchn. Sem. POMI, 462, POMI, St. Petersburg, 2017, 103–111; J. Math. Sci. (N. Y.), 232:2 (2018), 164–169
Citation in format AMSBIB
\Bibitem{Tep17}
\by Y.~Teplitskaya
\paper Regularity of maximum distance minimizers
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 462
\pages 103--111
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6499}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 2
\pages 164--169
\crossref{https://doi.org/10.1007/s10958-018-3866-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047398215}
Linking options:
  • https://www.mathnet.ru/eng/znsl6499
  • https://www.mathnet.ru/eng/znsl/v462/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :38
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024