|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 462, Pages 52–64
(Mi znsl6496)
|
|
|
|
Discrete Morse theory for the barycentric subdivision
A. Zhukova St. Petersburg State University, St. Petersburg, Russia
Abstract:
Let $F$ be a discrete Morse function on a simplicial complex $L$. We construct a discrete Morse function $\Delta(F)$ on the barycentric subdivision $\Delta(L)$. The constructed function $\Delta(F)$ “behaves the same way” as $F$, i.e., has the same number of critical simplices and the same gradient path structure.
Key words and phrases:
simplicial complexes, discrete Morse theory.
Received: 16.08.2017
Citation:
A. Zhukova, “Discrete Morse theory for the barycentric subdivision”, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Zap. Nauchn. Sem. POMI, 462, POMI, St. Petersburg, 2017, 52–64; J. Math. Sci. (N. Y.), 232:2 (2018), 129–137
Linking options:
https://www.mathnet.ru/eng/znsl6496 https://www.mathnet.ru/eng/znsl/v462/p52
|
Statistics & downloads: |
Abstract page: | 120 | Full-text PDF : | 49 | References: | 24 |
|