Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 462, Pages 52–64 (Mi znsl6496)  

Discrete Morse theory for the barycentric subdivision

A. Zhukova

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Let $F$ be a discrete Morse function on a simplicial complex $L$. We construct a discrete Morse function $\Delta(F)$ on the barycentric subdivision $\Delta(L)$. The constructed function $\Delta(F)$ “behaves the same way” as $F$, i.e., has the same number of critical simplices and the same gradient path structure.
Key words and phrases: simplicial complexes, discrete Morse theory.
Funding agency Grant number
Russian Science Foundation 16-11-10039
This work is supported by the Russian Science Foundation, grant 16-11-10039. The author is a~Young Russian Mathematics award winner and would like to thank its sponsors and jury.
Received: 16.08.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 2, Pages 129–137
DOI: https://doi.org/10.1007/s10958-018-3863-4
Bibliographic databases:
Document Type: Article
UDC: 515.142.332
Language: English
Citation: A. Zhukova, “Discrete Morse theory for the barycentric subdivision”, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Zap. Nauchn. Sem. POMI, 462, POMI, St. Petersburg, 2017, 52–64; J. Math. Sci. (N. Y.), 232:2 (2018), 129–137
Citation in format AMSBIB
\Bibitem{Zhu17}
\by A.~Zhukova
\paper Discrete Morse theory for the barycentric subdivision
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 462
\pages 52--64
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6496}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 2
\pages 129--137
\crossref{https://doi.org/10.1007/s10958-018-3863-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047390834}
Linking options:
  • https://www.mathnet.ru/eng/znsl6496
  • https://www.mathnet.ru/eng/znsl/v462/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :49
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024