Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 279–297 (Mi znsl6493)  

This article is cited in 3 scientific papers (total in 3 papers)

On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$

A. A. Fedotov

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (244 kB) Citations (3)
References:
Abstract: Let $z\in\mathbb C$ be the complex variable, and let $h\in(0,1)$ and $p\in\mathbb C$ be parameters. For the equation
$$ \psi(z+h)+\psi(z-h)+e^{-2\pi iz}\psi(z)=2\cos(2\pi p)\psi(z), $$
we study its entire solutions that have the minimal possible growth both as $\operatorname{Im}z\to+\infty$ and as $\operatorname{Im}z\to-\infty$. In particular, we showed that they satisfy one more difference equation:
$$ \psi(z+1)+\psi(z-1)+e^{-2\pi iz/h}\psi(z)=2\cos(2\pi p/h)\psi(z). $$
Key words and phrases: difference equations  in the complex plane, minimal entire solutions, monodromy equation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00668-à
Received: 13.11.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 5, Pages 750–761
DOI: https://doi.org/10.1007/s10958-019-04272-3
Document Type: Article
UDC: 517
Language: Russian
Citation: A. A. Fedotov, “On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 279–297; J. Math. Sci. (N. Y.), 238:5 (2019), 750–761
Citation in format AMSBIB
\Bibitem{Fed17}
\by A.~A.~Fedotov
\paper On minimal entire solutions of the one-dimensional difference Schr\"odinger equation with the potential $v(z)=e^{-2\pi iz}$
\inbook Mathematical problems in the theory of wave propagation. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 461
\pages 279--297
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6493}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 5
\pages 750--761
\crossref{https://doi.org/10.1007/s10958-019-04272-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6493
  • https://www.mathnet.ru/eng/znsl/v461/p279
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Çàïèñêè íàó÷íûõ ñåìèíàðîâ ÏÎÌÈ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :42
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024