Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 250, Pages 161–190 (Mi znsl649)  

This article is cited in 1 scientific paper (total in 1 paper)

Abel–Lidskii bases in non-selfadjoint inverse boundary problem

Ya. V. Kuryleva, M. Lassasb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Rolf Nevanlinna Institute, Department of Mathematics and Statistics, University of Helsinki
Full-text PDF (352 kB) Citations (1)
Abstract: Let $M$ be a manifold with bondary $\partial M\ne\varnothing$. Let $A$ be a 2-nd order elliptic PDO on $M$. Denote by $R_\lambda(x,y)$, $x$, $y\in M$, $\lambda\in\mathbb C\setminus\sigma(A)$ the Schwartz kernel of $(A-\lambda I)^{-1}$. We consider the Gel'fand inverse boundary problem of the reconstruction of $(M,A)$ via given $R_\lambda(x,y)$, $x$, $y\in\partial M$, $\lambda\in\mathbb C$. We prove that if the main symbol of $A$ satisfies some geometrical condition (Bardos–Lebeau–Rauch condition) then these data determine $M$ uniquely and $A$ to within the group of the generalized gauge transformations on $M$. The above mentioned geometric condition means, roughly speaking, that any geodesics (in the metric generated by $A$) leaves $M$.
Received: 16.10.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 102, Issue 4, Pages 4237–4257
DOI: https://doi.org/10.1007/BF02673855
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: Ya. V. Kurylev, M. Lassas, “Abel–Lidskii bases in non-selfadjoint inverse boundary problem”, Mathematical problems in the theory of wave propagation. Part 27, Zap. Nauchn. Sem. POMI, 250, POMI, St. Petersburg, 1998, 161–190; J. Math. Sci. (New York), 102:4 (2000), 4237–4257
Citation in format AMSBIB
\Bibitem{KurLas98}
\by Ya.~V.~Kurylev, M.~Lassas
\paper Abel--Lidskii bases in non-selfadjoint inverse boundary problem
\inbook Mathematical problems in the theory of wave propagation. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 250
\pages 161--190
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701865}
\zmath{https://zbmath.org/?q=an:0984.58009}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 102
\issue 4
\pages 4237--4257
\crossref{https://doi.org/10.1007/BF02673855}
Linking options:
  • https://www.mathnet.ru/eng/znsl649
  • https://www.mathnet.ru/eng/znsl/v250/p161
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024